Tissue Contraction Force Microscopy for Optimization of Engineered Cardiac Tissue.

نویسندگان

  • Jeremy A Schaefer
  • Robert T Tranquillo
چکیده

We developed a high-throughput screening assay that allows for relative comparison of the twitch force of millimeter-scale gel-based cardiac tissues. This assay is based on principles taken from traction force microscopy and uses fluorescent microspheres embedded in a soft polydimethylsiloxane (PDMS) substrate. A gel-forming cell suspension is simply pipetted onto the PDMS to form hemispherical cardiac tissue samples. Recordings of the fluorescent bead movement during tissue pacing are used to determine the maximum distance that the tissue can displace the elastic PDMS substrate. In this study, fibrin gel hemispheres containing human induced pluripotent stem cell-derived cardiomyocytes were formed on the PDMS and allowed to culture for 9 days. Bead displacement values were measured and compared to direct force measurements to validate the utility of the system. The amplitude of bead displacement correlated with direct force measurements, and the twitch force generated by the tissues was the same in 2 and 4 mg/mL fibrin gels, even though the 2 mg/mL samples visually appear more contractile if the assessment were made on free-floating samples. These results demonstrate the usefulness of this assay as a screening tool that allows for rapid sample preparation, data collection, and analysis in a simple and cost-effective platform.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manufacturing a Biomimetic Biorecator in Cardiac Tissue Engineering

Introduction: The direct approach of cardiac tissue engineering is to mimic the natural tissue of heart, considering the significant role of scaffolding and mechanical simulation.  Methods: To achieve this purpose, a composite Polycaprolactone (PCL)/Gelatin electrospun scaffold with a ratio of 70:30 and with the most similarities to the cardiac extracellular matrix was fabricated with aligned ...

متن کامل

Traction force microscopy of engineered cardiac tissues

Cardiac tissue development and pathology have been shown to depend sensitively on microenvironmental mechanical factors, such as extracellular matrix stiffness, in both in vivo and in vitro systems. We present a novel quantitative approach to assess cardiac structure and function by extending the classical traction force microscopy technique to tissue-level preparations. Using this system, we i...

متن کامل

Stiffness of the substrate influences the phenotype of embryonic chicken cardiac myocytes.

We examined the effect of substrate stiffness on the beating rate, force of contraction, and cytoskeletal structure of embryonic chicken cardiac myocytes by culturing them on laminin-coated polyacrylamide (PA) substrates. Cells cultured on PA substrates with elasticity comparable to that of the native myocardium (18 kPa) exhibited the highest beating rate during the first few days of culture. T...

متن کامل

IGF1 and NRG1 Enhance Proliferation, Metabolic Maturity, and the Force-Frequency Response in hESC-Derived Engineered Cardiac Tissues

Insulin-like growth factor 1 (IGF1) and neuregulin-1β (NRG1) play important roles during cardiac development both individually and synergistically. In this study, we analyze how 3D cardiac tissue engineered from human embryonic stem cell- (hESC-) derived cardiomyocytes and 2D-plated hESC-cardiomyocytes respond to developmentally relevant growth factors both to stimulate maturity and to characte...

متن کامل

The Role of Biodegradable Engineered Nanofiber Scaffolds Seeded with Hair Follicle Stem Cells for Tissue Engineering

Background: The aim of this study was to fabricate the poly caprolactone (PCL) aligned nanofiber scaffold and to evaluate the survival, adhesion, proliferation, and differentiation of rat hair follicle stem cells (HFSC) in the graft material using electrospun PCL nanofiber scaffold for tissue engineering applications. Methods: The bulge region of rat whisker was isolated and cultured in DMEM: n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Tissue engineering. Part C, Methods

دوره 22 1  شماره 

صفحات  -

تاریخ انتشار 2016